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The a r t i c l e  se t s  for th  one of the poss ib le  approaches  to the construct ion of a s ize d i s t r ibu-  
tion function of the f r agment s .  The R o z i n - R a m m l e r  law for  the dis tr ibut ion is obtained f r o m  
genera l  t heo re t i ca l  probabi l i ty  considerat ion.  The theore t ica l ly  obtained distr ibution function 
was ver i f i ed  in a la rge  number  of exper iments .  The exper imen ta l  data a r e  in good a g r e e m e n t  
with the theore t i ca l  deductions.  

1. Bri t t le  Fa i lure .  If, on explosion, a ma t e r i a l  is deformed e las t ica l ly  r ight  up to the point of fa i lure ,  
such fa i lure  is cal led br i t t l e .  A detai led rev iew on br i t t le  fa i lure  may be found in [1]. 

Here  this p rob l em  is cons idered  in i ts  mos t  gene ra l  a spec t s .  

Let  us cons ider  c racks  exist ing in a l imit ing equi l ibr ium. The theory  of br i t t le  fa i lure  is based  on 
two hypotheses :  

1) with the deformat ion  of an e l a s t i c -b r i t t l e  body, there  always ex i s t s  in the body a defect ,  which is 
r e g a r d e d  as  an isola ted c rack;  

2) the exist ing c r a c k  will be extended if, in this case ,  there  is a dec rease  in the total  potent ial  energy  
of the sys t em.  

A major i ty  of a r t i c l e s  on the theory  of br i t t le  f r a c t u r e s  a re  devoted to the development  of the second 
hypothesis ,  in va r ious  in te rpre ta t ions .  We shall  consider  some of the r e s u l t s  of these  invest igat ions,  which 
will  be requ i red  in the fur ther  exposit ion.  

It can be shown [1] that,  in the vicini ty of the end point of a c rack ,  the s t r e s s e s  ax and ay approach  
infinity in accordance  with the law 

where  e is a smal l  dis tance f r o m  the tip of the c rack .  The quantity K is called the coeff icient  of the intensity 
of the s t r e s s e s  and is de te rmined  by solution of the corresponding p rob lem in the theory  of e las t ic i ty .  

In the theory  of br i t t le  fa i lure ,  the following p a r a m e t e r  is introduced 

[ ~ l v' (1.1) 

Here  E is the Young modulus; v is the Poisson  coefficient; 7 is the effect ive specif ic  energy expended 
for  the fo rmat ion  of a unit of sur face  of the c rack .  The quantity T is the sum of the specif ic  work  for  the 
breaking of the in te ra tomic  bonds, To, and the specif ic  work  of the p las t i c  deformat ions ,  Tp 

7 -- 7o ~ 7~ (1.2) 
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The c rack  is in equi l ibr ium,  if 

K = K o  

F r o m  this ,  in pa r t i cu l a r ,  the re  is obtained the well  known Griffi ths formula ,  which de t e rmines  the 
s t rength,  o , ,  of a body containing a c r ack  with a length 2l ,  

It is e s sen t i a l  for  the fu r the r  exposit ion that the e l a s t i c -b r i t t l e  p r o p e r t i e s  of m a t e r i a l s ,  in the given 
s ta tement  of the p rob lem,  a r e  c h a r a c t e r i z e d  by a single p a r a m e t e r ,  K, with the dimensional i ty  ML1/2T -2. 

Fo r  appl icat ion of the theory  of br i t t le  f r a c t u r e s  to the p rob lem of explosive des t ruc t ion ,  the p ro b l em 
of the s ta t ic  in te rac t ion  of the s y s t e m  of c r acks  is  essen t ia l .  The s i m p l e s t  of such s y s t e m s  in an infinite 
number  of pa ra l l e l  c r acks ,  d isposed s y m m e t r i c a l l y  with r e s p e c t  to the y axis ,  loaded f r o m  within by a 
constant  p r e s s u r e  p. This  p r o b l e m  has been solved by many authors  [1]. The solution is obtained in the 
fo rm of s e r i e s ,  or  approx ima te ly  in finite analyt ica l  f o r m  [3] 

( h th'nZ IV, K ----- p ~--~ --~-/ (1.4) 

where  h is the dis tance between c racks ;  l is the half - length of a c rack .  

The theory  of equi l ibr ium br i t t le  f r a c t u r e s  does not consider  the p r o c e s s  of the gene ra t i ono f the  c r ack s .  
The re fo re ,  in fo rmula  (1.4) t he re  a r e  two unknown p a r a m e t e r s ,  h and l. As a hypothes is ,  the value of l may 
be fixed using the re la t ionship  (1.3), which takes  account  of the value of the defect  of the c h a r a c t e r i s t i c  of 
the given ma te r i a l .  Then (1.4) de te rmines  the dis tance between c racks  with s t r e s s e s  o, exceeding the s t rength  
of the ma te r i a l .  

Fo rmu la s  (1.3) and (1.4) can be t r a n s f o r m e d  to a more  convenient  fo rm.  If, in the Griff i ths  fo rmula  
(1.3), we set  l .  = b ~ 10 -8 cm (the in te ra tomic  dis tance) ,  it de t e rmines  the so -ca l l ed  theore t i ca l  s t rength,  %. 
In this case ,  it is n e c e s s a r y  to se t  , /= To = 1/2%b. It is then easy  to obtain 

~o-- ~ ( l _ v ~ ) ~ O . I E z  l,---- Xo 

and f r o m  (1.4) 

t h - ~ - =  at l = l , ,  K = K 0  (1.5) 

F r o m  the r e s u l t s  obtained in the dynamics  of br i t t le  fa i lure ,  we single out two. 

1. The ve loc i ty  of the c racks  can not exceed some l imit ing value.  This  r e su l t  has been obtained in a 
number  of theore t i ca l  and exper imen ta l  a r t i c l e s ,  r e f e r e n c e s  to which may be found in [1]. Theore t ica l ly ,  
the l imit ing ve loc i ty  of the development  of the c r acks  is equal to the Rayleigh veloci ty .  Its exper imen ta l ly  
found values  a r e  half  of this quantity. 

2. The s ta te  of s t r e s s  in the neighborhood of the tip of a moving c rack  dif fers  only slightly f r o m  the 
state of s t r e s s  of a mot ionless  c rack ,  with the s ame  geome t ry  and identical  ex te rna l  fo rces .  

This  r e s u l t  was  obtained exper imenta l ly  in [2]. On the bas i s  of these  two r e su l t s ,  the following f o r -  
mula may be cons t ruc ted  for  de termining the ve loc i ty  of the motion of the c r ack  [3]: 

C = C,  ]/-1 - -  K o / K  (1.6) 

Here  C,  is the l imit ing veloci ty  of the c rack;  K is the coeff icient  of the intensi ty of the s t r e s s e s ;  K 0 
is its equi l ibr ium value.  

An exper imenta l  ver i f ica t ion  of this fo rmula  is given in [4]. We now consider  the following p rob l em.  
In the plane xy, let  the re  exis t  an infinite s y s t e m  of pa ra l l e l  c r acks  with a length of 2l, d isposed s y m m e t r i -  
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cal ly  with r e s p e c t  to the y axis ,  at a distance h 0 apar t .  At the initial moment  of t ime ,  there  is built up 
within the c racks  a p r e s s u r e ,  p, which exceeds the equi l ibr ium p r e s s u r e ,  and which r e m a i n s  constant  du r -  
ing the whole t ime  of the motion. It is r equ i red  to de te rmine  the movement  of the c racks  and, in pa r t i cu la r ,  
to invest igate  the s tabi l i ty  of this  movement .  The solution of this p rob l em is given in [3]. The r a t e  of de-  
ve lopment  of the c r a c k s  is de te rmined  a t  once using fo rmulas  (1.4) and (1.6). Such a s y s t e m  of c r acks  has 
an instabi l i ty  of the following type. Let all  the c r acks  r ece ive  an identical  inc rement  of length. Then, the 
ve loc i ty  of the c r acks  with a la rge  length inc reases ,  while the veloci ty  of the sma l l e r  c r acks  d e c r e a s e s  
until they s t o p .  

It has been demons t r a t ed  that,  if the length of the large c r acks  exceeds  by e t imes  the length of the 
smal l  c r acks ,  the s ta te  of s t r e s s  in the neighborhood of the la rge  c racks  does not depend on the p r e sen ce  
of the smal l  c r a c k s .  A new s y s t e m  of c r acks  is fo rmed  with a dis tance of 2h 0 between them,  with which 
the same  p rocedu re  can be c a r r i e d  through. Thus,  with the p a s s a g e  of t ime ,  the dis tance between c racks  
has a tendency to i n c r e a s e .  

If the c r acks  t r a v e r s e  a dis tance L, the number  of poss ib le  ac ts  of doubling, N, is equal to l n ( L / / ) ,  
and the dis tance between the c racks  is 

h ---- ho 2N ---- ho (L //o) in ~ (1.7) 

2. Simple Size-Dis t r ibut ion  Function of F r a g m e n t s .  The probabi l i ty  c h a r a c t e r  of the development  
of c r acks  and the development  of f r agments  is the bas i s  of the theory  of br i t t le  fa i lure .  

In fact ,  if we r e t u rn  to the f i r s t  of the hypotheses  on which the Gr i f f i ths -Erwin  theory  is based,  the 
following is evident: with the deformat ion  of an e l a s t i c -b r i t t l e  body, in the body there  a r e  an a r b i t r a r y  num-  
ber  of defects ,  r e g a r d e d  as  c r acks .  

The s t rength  of a m a t e r i a l  with a s ta t ic  load is de te rmined  by the behavior  of a single c rack ,  evidently 
the l a rges t .  With a dynamic load and, in pa r t i cu la r ,  with an explosion in an a r b i t r a r y  finite volume of a 
solid, the re  develops s imul taneous ly  a l a rge  number  of f r ac tu re s ,  leading to the fo rmat ion  of f r agmen t s  of 
the mos t  va r i ed  d imens ions ,  vo lumes ,  and f o r m s .  It is c l ea r  f rom the foregoing that  an adequate  descr ip t ion  
of the f ragmenta t ion  (crushing) action of an explosion mus t  be based  on theore t ica l  probabi l i ty  concepts .  
The definite s ch em es  of fa i lure  which have been d i scussed  in the preceding  section,  mus t  de te rmine  the 
l inear  dimension of a f ragment ,  understood in the "mean"  sense .  

F r o m  the s a m e  s ta r t ing  point,  i t  is postula ted that  each f r agmen t  has some cha rac t e r i s t i c  l inear  
dimension,  i .e. ,  f r a g m e n t s  of the "needle" type a r e  not considered.  

In the s t a t i s t i ca l  ana lys i s  of the fo rmat ion  of f r agments ,  use is s o m e t i m e s  made of a no rma l  law of 
distr ibution with r e s p e c t  to the par t i c le  s ize ,  or  to the logar i thms of the s i zes  [5], as  well  as of the Poisson  
law [6]. In addition to these  laws, obtained on the bas i s  of theore t ica l  probabi l i ty  cons idera t ions ,  there  
exis t  a lso  a number  of e m p i r i c a l  re la t ionships ,  used mainly  in the ore -benef ic ia t ion  industry.  Among these ,  
t he re  must  be noted the R o z i n - R a m m l e r  law 

V (x) = Voe -ax'~ (2 .i) 

Here V 0 is the total volume of the mass of broken-down material being considered; x is the character- 
istic dimension of a fragment; V(x) is the volume of all the fragments whose dimension exceeds x; a and n 
are empirical parameters. 

An analysis of the results of industrial explosions [7], and of the experiments carried out in the present 
work, shows that this relationship may be applied with a sufficient degree of accuracy to the analysis of an 
exploded mass, as well as of fragments formed with the breakdown of some of the simplest constructions. 

We shall show that the Rozin-Rammler law is obtained as a partial case of general probability con- 
cepts, having a definite physical meaning. 

Let the distribution function (the probability that the fragments will have a linear dimension less than 
some given value of x) have the form 

ffa(x) = t--e-F(~),  F (0) = 0, F(oo) = oo (2.2) 
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Here F(x) is a posi t ively determined function, whose derivative may have a finite number of d iscon-  
tinuities of the f i rs t  kind over  the whole interval  of the change in x. 

The probabil i ty that the f ragments  will have a length in the range (x, x+ dx) is determined as 

dp = (I)' (x) dx = F '  (x) e-F( :0 (2.3) 

The number  of f ragments  in this range is 

vo v.o F '  d m  = --U dp  = (x) e-F(X)dx 
v (2.4) 

Here ~ is some mean volume of a par t ic le  having dimensions within the range (x, x + dx). 

Formula  (2.4) c lar i f ies  the concept of probability. In the given case 

v dV AVi 
d p  = ~ d m  = -V~ , Ap~ = vo (2.5) 

Thus, the probabil i ty that a par t ic le  will have a dimension lying within the range of values f rom x to 
x + Ax is the ratio of the volume of all the par t ic les  having the given dimensions to the total volume of the 
mass  being analyzed. The volume of all the par t ic les  whose dimensions are  g rea t e r  is determined f rom 
(2.3) and (2.4) 

V (x)  = ~ odin = Voe-~(x) 
. (2 .6)  

The Rozin-Rammler law is obtained from this, if we set F(x) =ax n. The normalizing condition 

~ d p  = i 
9 

which is satisfied as a resu l t  of the l imitations imposed on F(x), determines  the degree of accuracy  of the 
given approach.  Since, in rea l i ty ,  the dimension of the f ragments  va r i es  not f rom 0 to r but f rom some 
minimal  dimension Xmin to a maximal dimension Xma x, the accu racy  must be determined by sat isfact ion of 
the inequality 

Xmin 

9 Xma  I 

We shall  show that it is possible to determine F(x), s tart ing from theoret ical  probabil i ty concepts.  
We formulate  the hypotheses.  

1. It is postulated that all the faces of the f ragments  a r ep l ana r ,  andthat  there  a re  always two paral le l  
faces.  This postulation pe rmi t s  a "mult idimensional" problem for  the format ion of a f ragment  to a "one- 
dimensional" problem, and makes it possible to consider  mere ly  the p roce s s  of the development of two plane 
f rac tures ,  located at a cer ta in  distance, x, one f rom the other .  

Since the appearance of a f rac ture  at  a given point is accompanied by the unloading of the mater ia l  in 
the neighborhood of this point, it is evident that the specific probabil i ty Pl(dx/x) of the development of a 
second crack  at a distance x f rom the f i rs t ,  in the range of dx, depends on the value of x. In addition, Pl(dx/  
x) is proport ional  to dx 

Pl (dx / z ) =  ~ (x) dz 

If a homogeneous mater ia l  is being considered,  it is c lear  that the g rea te r  the distance x f rom the 
f i r s t  c rack,  the more  probable the appearance of a second crack.  

2. For  a given state of s t r ess ,  there exists a charac te r i s t i c  l inear dimension x0, which i s  such that 
the probabil i ty of the development of a second crack  at a distance x 0 is g rea te r  than at a distance x < x 0. 
This postulation can be writ ten,  for example, in the form 

(2.7) 
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where x 0 and n are  some pa rame te r s ,  and n > 1. If n = 1, (2.7) leads to a basic relationship,  which occurs  
in the derivation of the Poisson law for the distr ibution of points around a s traight  line. In this case,  the 
probabili ty that a point will fall  within the segment  dx does not depend on the presence  of points in the ad-  
jacent segments .  

3. The probabil i ty of the development of two c racks  in an infinitely smal l  segment  dx is equal to zero:  

p, (dx) = O, Po (dz) = i - -  P1 (dx) (2.8) 

L e t  u s  c a l c u l a t e  t h e  probabil i ty t h a t  t h e r e  a r e  no c r a c k s  in  t h e  s e g m e n t  ( x + d x ) .  In a c c o r d a n c e  w i t h  
the formula  for the multiplication of probabil i t ies:  

Po (x ~- dz) = eo (z) eo (x-~dz) 

Substituting here  (2.7) and (2.8), we obtain 

(2.9) 

f -  ~__[ x__]~-Idz ] Po(~ + ~)= ~o (~)L ~ - xo ~ Xo / J 

From this 

,,. - -  , 

The constant is determined f rom the condition P0(O) = 1. We thus obtain 

= 

It is evident that P0(x) is the probabili ty that a f ragment  will have a length g rea te r  than x, i.e., the 
distribution function (2.2) is connected with P0 by the relat ionship 

r (x) = l - P0 (x) 

The differential  probability,  dp, is the probabil i ty of the simultaneous occurence of two events: no 
cracks  in the segment  x, and one c rack  in the segment  dx, 

- , . , - - 1  [ ( � 8 8  dp = Po (x) Pl ( x-1 dx) . . . . .  exp -- dx (2.10) 

This express ion natural ly coincides with (2.3) if, in the latter,  we set 

F (~) = (z/xo) ~ 

Substituting this express ion into (2.6), we obtain the Roz in -Rammler  law in the form 

V (x) ---= V0 exp [--(x/xo)~] (2.ii)  

The mean size of the f ragments  is calculated by the usual method 

<x> = ~ xdp (2.12) 
0 

hence, af ter  substitution of (2.10) and the calculations,  we have 

<z)=XoF(i~-i/n),  p(t-}-t/n)_=~e-~tl/~dt (2.13) 
0 
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The dispersion of the value of x is calculated by the usual method using the formula 

i [ l+~/n l] D =  ( x - - < x > ) 2 d P =  <x>~ r ( t + t / n )  
0 

(2.14) 

As noted above, in the case under considerat ion,  n >> 1, so that the a rgument  of the F-function in (2.13) 
and (2.14) var ies  within the range from unity to two. At those values of the argument,  the F-function has a 
value on the o rder  of unity. We have the approximate relat ionships 

<x>.~ x0, D..~ <x>~/n (2.15) 

which bring out the s tat is t ical  meaning of the pa r ame te r s  n and x 0 in the Roz in -Rammle r  law, in the form 
(2.11). In this case ,  as a resu l t  of (2.5), the mean size of a f ragment  is understood as the "mean-suspended"  
value. Experimental  values will be denoted by the subscr ipt  z. The experimental  determinat ion of the mean 
value is ca r r i ed  out using the formula 

J AV~z (2.16) 
i = l  i ~ l  

Here Xiz is the mean size of the i- th group; AV i is the volume (weight) of the i- th group; V 0 is the total 
volume (weight) of the mass  being analyzed; j is the number of groups.  

The pa rame te r  n determines  the uniformity of the pulverizat ion.  It is evident that the lower the value 
of the dispersion,  the more  "c lus tered"  will be the a r rangement  of all the values of x with r e spec t  to the 
point x = (x>, i.e., the more uniform will be the pulverizat ion.  It follows f rom (2.15) that the uniformity of 
the pulverizat ion increases  with a r i se  in the value of n. The overexpenditure of power for the regrinding 
of ore  is bound up with the same pa rame te r .  

We assume that all the f ragments  forming after  an explosion are  geometr ica l ly  s imi lar .  Then, a 
fragment,  having the charac te r i s t i c  dimension x, has the surface s and the volume v, equal, respect ively ,  to 

where k s and k v are  constant  coefficients.  
p ress ion  

s = k s x  2,  v : k , , x  3 

The total surface of all the f ragments  is determined by the ex-  

+t S =  S d m =  Vo -~ -- x--~ ~, F i .-- 
0 

The optimal var ian t  of the pulverizat ion is achieved when the total volume is broken up into identical 
pieces with a size (x).  Under these c i rcumstances ,  the surface of all the f ragments  is 

<S> 

The relative fraction of "excess" surface is 

Vo k s 

<x> k v 

A S  s ~ <S> 
s s 

In this sense,  the case n = 1, corresponding to a Poisson distribution, is the most  disadvantageous; 
the total surface of all the par t ic les  and, consequently, the energy expended for its formation,  approaches 
infinity. With an increase  in the value of n, this value dec reases  rapidly and, with n = 1.5, is 1.42. We note 
in conclusion that, at large values of n, (on the order  of 2-3), the distr ibution law (2.10) is ve ry  close to a 
normal  (Gaussian) distribution. 

3. Experimental  Verification of Simple Distribution Function. For  the one-dimensional  fai lure model 
proposed above, the best experimental  approximation is obtained by the explosive destruction of r ings.  For  
the experiments ,  these r ings were made of aluminum. 
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With the pa rame te r s  of the explosives and of the 
mater ia l  of the r ings  selected in a corresponding manner,  
the main mass of the f ragments  was formed by radial  
c racks .  Collection of the fragments  after  a blast  presents  
considerable experimental  difficulties. To achieve a suf-  
ficiently convincing analysis  of the f ragments ,  as large 
an amount of them as possible must  be caught. In addi- 
tion, the fragments  must  be braked as slowly as possible,  
to avoid their  secondary pulverization.  In the experiments  
ca r r i ed  out, the f ragments  were  braked using snow. The 
experiments  were  ca r r i ed  out in a sufficiently large 
chamber ,  filled with packed snow. The charge of explosive 
(TG 50/50),  in the form of a cylinder,  was placed inside 
the r ing on a paper base, and was located at the center  of 
the chamber.  

After the explosion, the chamber  was washed with 
hot water ,  and the f ragments  were easi ly removed  f rom 

it. Thus, f ragments  with a total weight f rom 90 to 100% of the original  weight of the r ing were  successful ly 
collected. In each se r ies ,  with fixed pa rame te r s  of the explosive and of the r ing,  f rom 3 to 5 experiments  
were made, depending on the amount of f ragments  formed.  The total number of f ragments  in each ser ies  
was f rom 50 to severa l  hundred pieces.  The experimental  resul ts  were set up in the form of a table of val -  
ue s  of R(x) = V(x)/V0, corresponding to different values of x. In the case of r ings ,  the value of x was mea-  
sured by the weight of a f ragment .  Then, curves  of R(x) were plotted on a log-log scale.  In accordance  with 
(2.11), in the coordinates In ln(1/R),  In x, this dependence should be expressed by the s t ra ight  line 

In In ( i  / R) = n (ln z - -  In xo) ( 3 . 1 )  

Examples of such curves  are  given in Figs.  1-4. Figure 1 gives the resu l t s  of the destruct ion of 
Duralumin r ings .  The r ings  had a constant diameter  of 80 ram, a constant height of 10 ram, and thicknesses  
of 2,4, and 8 mm, which, on Fig. 1, correspond to curves  a, b, and c. The charge of explosive was in the 
form of a cylinder of TG with a weight of 18 g, a diameter  of 35 ram, and a height of 10 mm; the values of 
the p a r a m e t e r s  n and x 0 are  given in Table 1. As is evident, the experimental  points a re  well described by 
formula  (3.1). 

The second group of experiments  was ca r r i ed  out using a r ing of constant thickness (2 mm), but with 
charges  of different weights: Q = 4, 8, 18, and 43 g. The distribution pa rame te r s  for this group of exper i -  
ments a re  also given in Table 1. 

The mean values of (Xz), shown in Table 1, were calculated using formula  (2.13). These values p r a c -  
t ically coincide with the mean values calculated using formula  (2.5). The divergence between the two cases  
does not exceed 10%. 

The 4th, 5th, and 6th columns of Table 1 may be used to establ ish the dependence of x 0 on the weight 
of the charge Q in the form 

zo = c o n s t  Q-'/" (3.2) 

The fourth point shows a deviation toward the side of a decrease  in x 0. Up to the point where the di- 
ameter  of the charge is smal l  in compar ison with the diameter  of the ring, it can be assumed that the p r e s -  
sure at the front of the shock wave is proport ional  to the cube root  of the weight of the explosive. The dis-  
tension forces  ar is ing in the r ing evidently have a value direct ly proport ional  to the p r e s s u r e  in the shock 
wave. Denoting the distension s t r ess  by p, we have 

Xo ~-* P - I  

This resul t  is in agreement  with formula (1.5), in which it is necessa ry  to set  h = x0; since th(~ l / h )  ,~ 1 

at l >--h, f rom (1.5) we have 

zo = ~tl, (z, / p)' 
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TABLE 1 

n 
%, am 
<x>, cm 

B, m i n  

2 4 8 
2.2 2.8 3.3 
i.7 t.7 2.0 
1.4 1.4 i.8 

Q'g [ 

s ti: 
1.9 2.7 2.2 
4.7 2.7 
4.i 2.4 

43 
t.3 
0.5 
0.4 

In accordance  with the data of Table 1, the dependence of the 
mean diameter  on the thickness of the ring, 5, with a constant 
weight of explosive, can be represen ted  in the form x 0 ~ 5 ~ Qual- 
itatively, this resu l t  is in agreement  with formula (1.7); the d ive r -  
gence in the power exponents can be explained by the high degree 
of simplification of the model problem.  

To clar i fy  the distribution function in the more  genera l  
case ,  labora tory  tests  were made with samples  of more complex 

construction.  The explosions were ca r r i ed  out in cylindrical  blocks, with a height equal to their  d iameter ,  
made of Plexiglas as well as of Mendeleev cement.  A concentrated charge (hexogene) was placed at the 
center  of the block. The procedure  used in collecting the f ragments  was the same as in the case of the 
metall ic r ings.  As a resu l t  of the great  number of f ragments  formed (in some experiments ,  on the o rder  
of 106), the par t ic le  size analysis  was done by screening through a sieve with cal ibrated openings f rom 0 to 
24 ram. 

The resul t s  of three ser ies  of experiments  in Plexiglas blocks with a size of 140 ram, and with charges  
weighing 3, 10, and 100 g, are  shown graphical ly  in Fig. 2 (straight lines 1, 2, and 3, respect ively) .  As is 
evident, in this case the Roz in -Rammle r  distribution function descr ibes  the experimental  data well. 

The fact that distribution function (2.11) descr ibes  not too badly the resu l t s  of labora tory  tes ts  with 
cyl indrical  blocks suggests  the application of the Roz in -Rammle r  law to the analysis  of the pa r t i c l e - s i ze  
composit ion of an exploded mass ,  and to more complex cases .  It is to be expected that the accuracy  of such 
an analysis will be lower than in the preceding cases .  

4. Distribution Function of F ragments  with the Explosion of Structures of Arb i t r a ry  Form.  Let us 
consider  the action of a concentrated charge in a continuous or  bounded mass  of rock.  The physical  picture 
of the breakdown is approximately the following. Compress ion and expansion waves,  passing through the 
medium, bring about the opening up to mic roc racks ,  whose propagation with the subsequent motion of the 
medium under the action of the detonation products  leads to the format ion of f ragments .  

Since the intensity of the waves dec reases  with increasing distance f rom the charge,  there  is also a 
decrease  in the s t r e s s e s  which lead to breakdown. 

We shall consider  the formation of f ragments  in each e lementary  spher ical  layer  of radius  r and thick-  
ness  dr. It is evident that the mean dimensions of the f ragments  in each layer  increase  with increasing 
distance f rom the center  of the blast. We make the following assumptions:  

1) in each e lementary  layer ,  the distribution of the f ragments  is descr ibed by the functions (2.11) 

V r (x) = 4 u r  2 exp [ - - ( x / x o )  n] dr 

2) the value of n does not vary  with distance,  while x 0 increases  in accordance  with the law 

xo = A r  ~ 

The volume of all the f ragments  having a dimension g rea te r  than x is equal to 

V ( x ) = i 4 g r 2 e x p [ _ /  ~ ~n7 , ~x -~ ) j .  J dr 
ro 

(4.1) 

The integration is ca r r i ed  out within the limits f rom the radius of the cavity to the breakdown radius  
R0, in the case of an unbounded mass .  If the blast  takes place in a bounded region,  by R 0 there must  be 
understood its charac te r i s t i c  dimension. In all cases  which are  important  in prac t ice ,  R 0 >> r 0. 

We integrate (4.1) by par t s  

R, 
4~ z n r / z }~71 4g~0n [~ f x ~n 7 

3 - -  ro  3 e x p  l - -  V(x)= --5--{..~o exp[-- (xo"-~~-hd-o)) ] _ ~ , ~ )  JJ ' -~3- b ((~-o) expr-(-~o)=] r~dr 
r o 

(4.2) 
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T A B L E  2 

Expt. n 
No, 

t 
2 
3 
4 
5 
6 
7 
8 
9 

t0 
l i  

Q Qa xo 

0.5 538 6.36 
0.5 4866 i9.3 
0.2 2353 26.6 
0.2 i250 13.7 
0.i i727 23.3 
0.1 122i 23.3 
0.04 855 55 
0.04 t388 52 
0.02 859 39.6 
0.0005 2.13 4.7 
0.0005 0.8 1.5 

TABLE 3 

Expt. Q QO xa 
NO, 

1.92 i 0.5 
2.04 2 0.5 
i .73 3 0.2 
2.05 4 0.i 
i.8 5 0.i 
i.77 6 0.05 
i.32 7 0.05 
1.52 8 10.02 
1.68 9 i 0.02 
1.29 
i. 28 

i7tt 
i862 
465 
500 
220 
16t 
332 
79 
29 

28.2 
i9.9 
i4.6 
20.7 
13.5 
t5.6 
i i .2 
8 

31.2 

H n 

87 1.59 
70 t.3 
48 t.7 
50 1.56 
40 i .5 
30 i.44 
30 t.47 
20 0.91 
20 1.32 

3 

2 

I 

o 

-I 

-Z 

Ca) (b) 

,I 

3 Z 

"X ! 

0 / z 

-ll [ 1 .  [ ~ o / n  l/el 

Fig. 4 Fig. 3 

An eva lua t i on  shows tha t  the va lue  of the second  t e r m  in  the r i g h t - h a n d  p a r t  of th i s  equa l i ty  may be 
neg l ec t ed  in  c o m p a r i s o n  with the  f i r s t  t e r m ,  if the condi t ion  wn > 2 is  fu l f i l led .  Since the n is  e v e r y w h e r e  

>- 1, th i s  t e r m  may  be neg l ec t ed  if a > 2. 

We pos tu l a t e  tha t  th i s  inequa l i ty  holds .  Then ,  f r o m  (4.2), t ak ing  into accoun t  tha t  R 0 >>r0, we ob ta in  

V(x)=V0exp  - -  ~ , V0= 3 

Thus ,  in  th is  case  a l so ,  we go over  to the R o z i n - R a m m l e r  f o r m u l a .  

As  is ev ident ,  the m e a n  s ize  of a f r a g m e n t  is  d e t e r m i n e d  by the s ta te  of s t r e s s  a t  the b o u n d a r y  of the 
b reakdown zone with a b l a s t  in an unbounded  me d i um,  o r  at  the bounding su r f a c e  of a m a s s .  Th i s  r e s u l t  

m u s t  be u n d e r s t o o d  to be p u r e l y  r e l a t i v e  s ince ,  in the f i r s t  ca se ,  t he r e  is  no c l e a r l y  def ined r a d i u s  of the 
b reakdown zone and,  in  the second  case ,  the s ta te  of s t r e s s  n e a r  a f r ee  bounda ry  i s ,  g e n e r a l l y  speaking,  
unknown.  By the b o u n d a r y  of the b reakdown zone,  t h e r e  is u sua l ly  u n d e r s t o o d  a s u r f a c e  a t  which some  s ta t ic  
c r i t e r i o n  of b r eakdown  is  s a t i s f i ed ,  for  example ,  equa l i ty  of the d i s t e n s i o n  s t r e s s  and the t e n s i l e  s t r eng th .  
In the t heo ry  of b r i t t l e  f a i l u r e ,  th is  m e a n s  that  t he r e  is one l i m i t i n g  f r a c t u r e ,  whose length is  d e t e r m i n e d  by 
e x p r e s s i o n  (1.3). It is  c l e a r  tha t  for  the s t a t i s t i c a l  a n a l y s i s  of f r a g m e n t s ,  when the p r e s e n c e  of a l a rge  
n u m b e r  of c r a c k s  is  unde r s tood ,  such a d e t e r m i n a t i o n  is  not  f ea s ib l e .  N e v e r t h e l e s s ,  e x p r e s s i o n  (4.3) may  
be found use fu l  to c o n s t r u c t  an e m p i r i c a l  f o r m u l a ,  for  the pu r pose  of d e c r e a s i n g  the n u m b e r  of p a r a m e t e r s  
to be d e t e r m i n e d  e x p e r i m e n t a l l y .  

We pos tu l a t e  tha t  the d i s t e n s i o n  s t r e s s  a r i s i n g  in  a m e d i u m  with the exp los ion  of a cha rge  of weight  
Q a t  a d i s t ance  r f r o m  the c e n t e r  of the b las t ,  is  d e t e r m i n e d  as 

~ = Bo (QVo/r)~ (BI = const) (4.4) 

Here ,  the c o n s t a n t  depends  on the p r o p e r t i e s  of the exp los ive  and of the m e d i u m .  We a s s u m e  f u r t h e r  
tha t  the b r i t t l e  p r o p e r t i e s  of the m e d i u m  a r e  d e t e r m i n e d  by the p a r a m e t e r  K 0 (1 . l ) .  Then,  f r o m  c o n s i d e r a -  
t i ons  of d i m e n s i o n a l i t y ,  we have 
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Xo = B2 K~ (B~ = oonst) (4.5) 6r2 

From these express ions ,  at r = R 0, we obtain 

: Ro \2~ 

or,  introducing the specific consumption of explosive, w = Q/V 0, we have 

x o = B 4 K o  ~ (Vo /Q)  2/'a = B s K o ~ w ;  '1"~ (B4, B5 = const) (4.6) 

In this expression,  x 0 does not depend on the scale of the explosion which, in the genera l  case,  c o r -  
responds to the experimental  data. It is a question of the fact that the considerat ions leading to formula  
(4.6) are  essent ial ly  based on s ta t is t ical  considerat ions .  It is found that the scale factor  is direct ly  con- 
nected with the kinetics of the f rac tures .  We assume that there are  being considered two explosions of 
spherical  charges ,  Q and k3Q, in an unbounded mass ,  or in geometr ica l ly  s imi lar  pieces .  Then, at s imi la r  
distances,  i.e., r in the f i rs t  case and kr in the second, the s t r e s se s  ar is ing with the passage  of a wave, at  
corresponding moments  of t ime,  will c lear ly  be identical. In accordance with s ta t is t ical  considerat ions,  
the sys tems of c racks  originally c rea ted  will be the same.  

However, the time of action of these s t r e s se s  is g rea te r  in the second case.  If it is roughly assumed 
that the wave length in the second case is k t imes g rea te r  than in the f i rs t  case ,  and that development of the 
cracks  occurs  in a definite constant  pa r t  of the wave length, we obtain f rom this that the development of a 
network of c racks  in the second case develops over a per iod of t ime which is k t imes g rea te r  than in the 
f i r s t  case.  It was demonst ra ted  at the end of Section 1 that the development of a sys tem of c racks  is of an 
unstable nature: if some crack,  by chance, becomes la rger  than the adjacent c racks ,  its veloci ty  increases ,  
while that of the adjacent c racks  decreases .  For  the s implest  sys tem of c racks ,  the distance between them 
with the passage of a wave length L increases  in the rat io (L/10)ln2 , where 2l 0 is the original length of the 
c racks .  

In the general  case,  the power exponent may be different, since the original  network of c racks  is of a 
more complex s t ruc ture .  

If, by L, we understand a wave length proport ional  to Q 1 / 3  then, introducing an additional factor  into 
(4.6), we obtain the empir ica l  formula  

Xo = B (Vo /Q  )'I?~Q'/~ (4.7) 

Here fi is a scale factor;  ~ is the attenuation coefficient of the s t r e s se s .  At this stage of the invest iga-  
tion it is hardly possible to assign a concre te  meaning to the constant B on the basis  of formulas  (4.4) and 
(4.5), in view of their  rough approximate nature.  In addition, the value of K0, for example, for a majori ty  
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TABLE 4 

i 
2 
3 

?tl 

1.26 
1.05 
1.7 

.t~ na 

t.i25 
0.3 

(x) 
lnbt Inb~ (film) 

05 2~ [i32 
1.9 169 

i . 4  2 .8  193 

(x z) 
(ram) 

ti2.9 
i25.9 
i83.2 

of rocks  is s imply unknown since, in accordance with formulas  
(1.1) and (1.2), it includes the specific work of plast ic  de fo rma-  
tions. Thus, in formula (4.7), the pa rame te r s  B, ~, and fi r emain  
to be determined.  

5. Experimental  Explosions in Rocks.  An experimental  
ver if icat ion of the applicability of the Roz in -Rammle r  law in the 
stat ist ic analysis  of the pa r t i c l e - s i ze  composition of an exploded 
mass  of rock was f i rs t  ca r r i ed  out in [7]. 

On the basis  of an analysis  of a large number of industrial  explosions it has been demonstrated that 
formula  (2.1) descr ibes  the experimental  data sufficiently well. However, in calculation of the mean size 
of a piece, the authors of  [7] did not obtain sa t i s fac tory  resul ts .  The divergence between the theoret ical  
and experimental  values was 50-60%. To make this situation more  prec ise ,  the present  authors have ca r r i ed  
out additional exper iments .  

The exper iments  were  ca r r i ed  out on limestone, of the eighth strength category.  Two ser ies  of exper -  
iments were made. In one of them, the explosions were  ca r r i ed  out on individual rocks ,  and in the other in 
an outcropping of a continuous mass .  Charges of hexagene were used. The weight of the charge wasva r i ed  
in the range f rom 20 to 500 g. Each experiment  was repeated 2-3 t imes  with exactly the same weight of 
explosive and approximately identical sizes of the rocks .  The pa r t i c l e - s i ze  composit ion of the exploded 
mass  was analyzed using a s ieve-type screen,  and the corresponding fract ions were weighed. The ra t io  of 
this weight to the total weight of the f ragments  collected determines  the quantity 

R (z) = V (~) / V0 

In the given case ,  the pa r ame te r  x is the d iameter  of the opening in the corresponding sieve, d. The 
p a r a m e t e r s  of the explosions and the ana ly t i ca l r e su l t s  a re  given in Tables 2 and 3, as well as in Fig. 3a 
and b, respect ive ly ,  for the explosions in individual rocks  and in the outcropping. 

In the p resence  of considerable scat ter ,  s t raight  lines were  passed  through the experimental  points, 
using the method of least  squares .  The number of the s traight  line on the f igures  corresponds  to the number 
of the experiment.  In addition, the mean value of (x z) was determined,  calculated direct ly  f rom experiments ,  
using formula  (2.16). 

The maximal divergence between the values of (x) and (Xz), calculated using formula  (2.13), was not 
more  than 15% and, in a major i ty  of cases ,  not more  than 4-6%. 

Let us compare  the data for two exper iments  in rocks  (Table 2). A charge with a weight of 500 g in a 
rock  with a weight of 5000 kg, gives a mean f ragment  diameter  of ~ 19 cm. 

With the explosion of a charge with a weight of 0.5 g in a rock  with a weight of 2.130 kg, there  a re  
formed f ragments  with a mean size of ~ 50 cm. With an increase of the scale by approximately 10 t imes ,  
the dimension of a f ragment  increases  by four t imes .  It may be assumed that, with an increase  in the scale 

i72 S 1 fo mul of the explosion by k t imes , the  mean dimension of a f ragment  increases  by k . Thu , "n r a (4.7), 
fl = t/2. The dependence of the mean dimension of a f ragment  on the specific consumption of explosive can 
be obtained if all the data of the tables are  plotted on a curve in the coordinates ln(10 Q/V0) , ln(x0/Qt/6). 
This curve is shown on Fig. 4, and the final resu l t  can be represen ted  in the form of the equation 

x0 ~ t0Qv. (v0 / Q)'~' ( 5 . D  

Here Q is the weight of explosive, kg; V is the volume of soil broken up, m3; x 0 is the mean size of a 
piece,  cm. 

With explosions in an outcropping, a formula  analogous to (5,1) has not been obtained up to the present  
t ime, since the range of change in x 0 in the experiments  was ve ry  small .  

6. Effect of a Nonhomo~eneous Medium on the Structure of the Distribution Function. If the mater ia l  
being broken up by an explosion contains nonhomogeneities and previous ly  per turbed microscopic  c racks ,  
the size distribution of the f ragments  becomes more  complex. As an example, let us consider  the resul ts  
of one of the experiments  presented in [8]. The samples  exploded consisted of sandstone which, as is well 
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known, is made up of ext remely  s trong grains ,  disposed in a less strong cementing mass .  An analysis of 
the data of [8], in the coordinates In In R -i and In x, leads to the curve shown in Fig.  5. If, as in [8], we 
plot graphical ly the dependence of the density of the distribution on the sizes of the fract ions,  we obtain a 
curve with two maxima (Fig. 6). One of these cor responds  to the mean size of the strong grains,  and the sec -  
ond to the mean size of the f ragments  formed as the resul t  of external  action. 

Formal ly ,  we a re  here  considering two associa ted  distributions: one given by the s t ruc ture  of the 
medium, the other the resul t  of explosive action. The previously  descr ibed approach to the determination 
of the pa r t i c l e - s i ze  composit ion of an exploded mass  can be extended also to this more complex case. 

Let us consider  the distributio~ function 1-R(x) in the form (2.2), where F{x) is an a rb i t r a ry  function. 

For  a case s imi lar  to that i l lustrated in Fig. 5, where the curve of the dependence of In in R -i on in x 
is r epresen ted  by three  s t ra ight  lines, the function F(x) may be represen ted  in the form 

( ni-4-na n a - n = l  z [) 
F (x) = exp a q- ---E--- In x + ~ I In bi x I q- - - - E - -  In ~-= 

where a,  bt, b2, nt r~, n3 a re  the dis t r ibut ion p a r a m e t e r s .  Such a scheme is shown schematical ly  in Fig. 7, 
which shows also the designation of the charac te r i s t i c  points in t e rms  of the distribution pa rame te r s .  Sub- 
stituting F(x) Into (2.2) and taking double logar i thms,  we obtain 

[ ni In x + Ci at  In x ~ -- In bi 

lnln R-t = { n2 In x + C2 at -- In b 1 ~ In x ~ In b~ 
( n~ In x q- C 3 at In x ~> In b~ 

Ci, C=, Ca = const 

For  the differential probabili ty,  dp, we have 

dp = F'  (x) e-F(~)dx = ] (x) dx 

The function F(x) is determined by the following express ions:  

~'1 '~ ~X n" at  t / bi ~ x ~ b2 
F (x) = eab ( ' -n ') l  2b(n'-n') I ~ n, x at b , <  x < ~  

In accordance  with this, the distribution density is 

] ( X ) ~  n~i [ x.---~ hi-1 exp[ I x  \nl] 

where the subscr ipts  1, 2, 3 cor respond to the intervals  of change in x: (0, 1/bt), (l/b1, b2), (b2, ~). 

In this case ,  the values of x0i are  the following: 

r ~  al~(n~-n~) I 21~(n,-n~) I 21 n 
XOI - = L ~- v l  v2 i l l  1 

xo2 = [e-ab(i '~'-n+)! 2b~*"-n') ] 2]i ! n, 
X 0 3  ~ [ e-ab(nmn~')l ] 2b["-n')~ / 211 l j  n .  

In the given case,  the mean size of a fragment ,  calculated using (2.12), is r epresen ted  in the form of 
the following formula:  

F(_ i I / ~  t / G 17 b~ ~, l 
(6.1) 
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Here  Gl(x, a) and G2(x, a) a r e  incomplete  F-funct ions  

x 

c1 (x, a) = S e ,to .dr, C . (x ,  a) = ,to 
0 x 

Let  us cons ider  the r e s u l t s  of th ree  exper iments ,  taken f r o m  [8]. These  data a r e  used to plot the 
curves  shown in Fig. 5. The values  of the p a r a m e t e r s  bi, I)2, hi, n2, n3, In bl,  and In b2, de te rmined  using 
these  cu rves ,  as  well  as  the mean values  of (x), calculated using formula  (6.1) and of (Xz) , de te rmined  
d i rec t ly  f rom expe r imen ta l  data,  a r e  given in Table  4. As is evident f rom the curves  p resen ted ,  a gen e ra l -  
ized R o z i n - R a m m l e r  law, in the f o r m  (2.2), can be applied with sufficient a ccu racy  to the analys is  of the 
p a r t i c l e - s i z e  composi t ion of an exploded mass  and to calculat ion of the mean size of a f ragment .  We note 
that  f rac t ions  owing the i r  origin to the s t ruc tu ra l  inhomogeneity of the ma te r i a l  a r e  descr ibed  by the r igh t -  
hand p a r t  of the curves  given in Fig.  5. In this case ,  as is evident f rom Table  4, n 3 is a lways less  than 
unity. For  the breakdown of homogeneous ma te r i a l s ,  the distr ibution of the f r agmen t s  is descr ibed  by f o r -  
mula (3.1) with n >1. This  fac t  was essen t i a l  in the const ruct ion of the s imple  dis t r ibut ion function. In the 
case  under considera t ion,  the value of n 3 mus t  be l ess  than unity; this  follows f r o m  the following cons ide ra -  
t ions.  Let us a s s u m e  that  the object  being broken down cons is t s  of ve ry  strong blocks with a mean size of  
x03, cemented  together  by a l e s s  s t rong ma te r i a l .  It is c lear  that  the fo rmat ion  of a f r agmen t  with a s ize 
l e s s  than x03 will be l ess  probable  than the fo rmat ion  of a f r agment  containing s e v e r a l  s t rong blocks.  In 
other  words ,  in the given case ,  the exponent in fo rmula  (3.2) must  be negat ive,  or  n < 1. In the case  when 
the inhomogeneity of the medium is due to its highly developed f iss i l i ty ,  the si tuation will be the opposi te .  
The probabi l i ty  of the fo rmat ion  of a f r agm en t  with a s ize g r e a t e r  than that  de te rmined  by a s y s t e m  with 
p rev ious ly  developed c racks  is l ess  than that  of a f r agmen t  of sma l l e r  s ize.  

In this case  we have two s t ra igh t  l ines with the s lopes tg ~1 = nl > 1, tg a 3 = n 3 >1, connected by a seg -  
ment  with the slope tg a 2 = 1% 2 ~ 1. Genera l ly  speaking, the question of the effect  of p rev ious  f i ss i l i ty  has,  
at  the p r e sen t  t ime,  been insufficiently invest igated.  The main r e a s o n  for  this is that  there  is no sa t i s fac to ry  
method for  the exper imen ta l  de terminat ion of f i ss i l i ty  within a m a s s  of rock.  
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